The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
随着自我监督学习的快速发展(例如,对比度学习),在医学图像分析中广泛认识到具有大规模图像(即使没有注释)来训练更具概括的AI模型的重要性。但是,大规模收集大规模任务的未注释数据对于单个实验室来说可能具有挑战性。现有的在线资源(例如数字书籍,出版物和搜索引擎)为获取大型图像提供了新的资源。然而,在医疗保健中发布的图像(例如放射学和病理学)由大量的带有子图的复合图组成。为了提取和分离化合物形象为下游学习的可用单个图像,我们提出了一个简单的复合图分离(SIMCFS)框架,而无需使用传统所需的检测边界框注释,并具有新的损失函数和硬案例模拟。我们的技术贡献是四倍:(1)我们引入了一个基于模拟的培训框架,该框架最小化了对资源广泛的边界框注释的需求; (2)我们提出了一种新的侧损失,可针对复合人物分离进行优化; (3)我们提出了一种阶层内图像增强方法来模拟硬病例; (4)据我们所知,这是第一项评估利用复合图像分离的自我监督学习功效的研究。从结果来看,提出的SIMCF在ImageClef 2016复合人物分离数据库上实现了最先进的性能。使用大规模开采数字的预审预革的学习模型通过对比度学习算法提高了下游图像分类任务的准确性。 SIMCF的源代码可在https://github.com/hrlblab/imageseperation上公开获得。
translated by 谷歌翻译
由于物体的异质尺度,肾脏病理图像的全面语义分割具有挑战性。例如,在整个幻灯片图像(WSI)上,肾小球的横截面区域的距离可能比周围毛细管的64倍,这使得以相同尺度上的同一贴片对两个对象进行分割是不切实际的。为了解决这个缩放问题,先前的研究通常已经训练了多个分割网络,以匹配异质组织类型的最佳像素分辨率。这种多网络解决方案是资源密集型的,无法对组织类型之间的空间关系进行建模。在本文中,我们提出了Omni-Seg+网络,这是一种通过单个神经网络实现多对象(六种组织类型)和多尺度(5倍至40倍尺度)的多尺度(5倍至40倍尺度)的动态神经网络。本文的贡献是三个方面的:(1)提出了一种新型的量表感知控制器,以将动态神经网络从单尺度到多尺度推广; (2)引入了伪标签的半监督一致性正规化,以建模未经注释的组织类型的尺度相关性成单个端到端的学习范式; (3)直接将在人类肾脏图像训练的模型中直接应用于小鼠肾脏图像,而无需再培训,就可以证明高尺度感知的概括。通过从三种不同分辨率下从六种组织类型中学习的约150,000个人类病理图像斑块,我们的方法根据人类的视觉评估和图像词的评估(即空间转录组学)获得了卓越的分割性能。官方实施可在https://github.com/ddrrnn123/omni-seg上获得。
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Vertical Federated Learning (VFL) is widely utilized in real-world applications to enable collaborative learning while protecting data privacy and safety. However, previous works show that parties without labels (passive parties) in VFL can infer the sensitive label information owned by the party with labels (active party) or execute backdoor attacks to VFL. Meanwhile, active party can also infer sensitive feature information from passive party. All these pose new privacy and security challenges to VFL systems. We propose a new general defense method which limits the mutual information between private raw data, including both features and labels, and intermediate outputs to achieve a better trade-off between model utility and privacy. We term this defense Mutual Information Regularization Defense (MID). We theoretically and experimentally testify the effectiveness of our MID method in defending existing attacks in VFL, including label inference attacks, backdoor attacks and feature reconstruction attacks.
translated by 谷歌翻译
Normalizing flow is a class of deep generative models for efficient sampling and density estimation. In practice, the flow often appears as a chain of invertible neural network blocks; to facilitate training, existing works have regularized flow trajectories and designed special network architectures. The current paper develops a neural ODE flow network inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which allows efficient block-wise training of the residual blocks and avoids inner loops of score matching or variational learning. As the JKO scheme unfolds the dynamic of gradient flow, the proposed model naturally stacks residual network blocks one-by-one, reducing the memory load and difficulty of performing end-to-end training of deep flow networks. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the trajectory in probability space, which improves the model training efficiency and accuracy in practice. Using numerical experiments with synthetic and real data, we show that the proposed JKO-iFlow model achieves similar or better performance in generating new samples compared with existing flow and diffusion models at a significantly reduced computational and memory cost.
translated by 谷歌翻译
Score-based diffusion models have captured widespread attention and funded fast progress of recent vision generative tasks. In this paper, we focus on diffusion model backbone which has been much neglected before. We systematically explore vision Transformers as diffusion learners for various generative tasks. With our improvements the performance of vanilla ViT-based backbone (IU-ViT) is boosted to be on par with traditional U-Net-based methods. We further provide a hypothesis on the implication of disentangling the generative backbone as an encoder-decoder structure and show proof-of-concept experiments verifying the effectiveness of a stronger encoder for generative tasks with ASymmetriC ENcoder Decoder (ASCEND). Our improvements achieve competitive results on CIFAR-10, CelebA, LSUN, CUB Bird and large-resolution text-to-image tasks. To the best of our knowledge, we are the first to successfully train a single diffusion model on text-to-image task beyond 64x64 resolution. We hope this will motivate people to rethink the modeling choices and the training pipelines for diffusion-based generative models.
translated by 谷歌翻译
This paper studies the distribution estimation of contaminated data by the MoM-GAN method, which combines generative adversarial net (GAN) and median-of-mean (MoM) estimation. We use a deep neural network (DNN) with a ReLU activation function to model the generator and discriminator of the GAN. Theoretically, we derive a non-asymptotic error bound for the DNN-based MoM-GAN estimator measured by integral probability metrics with the $b$-smoothness H\"{o}lder class. The error bound decreases essentially as $n^{-b/p}\vee n^{-1/2}$, where $n$ and $p$ are the sample size and the dimension of input data. We give an algorithm for the MoM-GAN method and implement it through two real applications. The numerical results show that the MoM-GAN outperforms other competitive methods when dealing with contaminated data.
translated by 谷歌翻译
Currently, most deep learning methods cannot solve the problem of scarcity of industrial product defect samples and significant differences in characteristics. This paper proposes an unsupervised defect detection algorithm based on a reconstruction network, which is realized using only a large number of easily obtained defect-free sample data. The network includes two parts: image reconstruction and surface defect area detection. The reconstruction network is designed through a fully convolutional autoencoder with a lightweight structure. Only a small number of normal samples are used for training so that the reconstruction network can be A defect-free reconstructed image is generated. A function combining structural loss and $\mathit{L}1$ loss is proposed as the loss function of the reconstruction network to solve the problem of poor detection of irregular texture surface defects. Further, the residual of the reconstructed image and the image to be tested is used as the possible region of the defect, and conventional image operations can realize the location of the fault. The unsupervised defect detection algorithm of the proposed reconstruction network is used on multiple defect image sample sets. Compared with other similar algorithms, the results show that the unsupervised defect detection algorithm of the reconstructed network has strong robustness and accuracy.
translated by 谷歌翻译